

SINTEF RESEARCH ON OFFSHORE WIND

-1-

Øyvind Hellan, VP Research, SINTEF Ocean

Scandinavia's largest independent research organization

SINTEF research in Offshore Wind

- Substructures
- Control systems
- Grid connection
- Logistics, O&M
- Marine operations
- Materials

We operate some of the world's most advanced energy and marine technology laboratoeries

- Ocean Basin
- Wind Tunnel
- Power cable and risers' lab
- Smart Grid lab
- Material labs

We work in close partnership with NTNU

- Strategic and operational cooperation since 1950
- Joint use of laboratories and equipment
- Cooperation covers research projects, research centers and teaching

SINTEF

The largest marine technology research and education centre in the western world

- Graduating 120-140 M.Sc,. and 15-20 Ph.D. every year within marine technology.
- Hosting two successive centres of excellence in Norway.
- Hosting four successive centres of research-based innovation in Norway

Our fundamental basis

We offer a unique combination of world-class laboratories, software development and engineering competence

A strong portfolio of R&D projects

H2020

- Lifes50+ (2015-2018)
- BestPaths
- TotalControl

EU FP7:

- DeepWind (2010-2014)
- LEANWIND (2013-2016)

Norwegian Research Council

- WAS-XL (2017 2020)
- HVDCpro
- OPWIND
- WindSense (2012-2014)
- FAROFF (2012-2014)
- Deep sea offshore wind turbine technology (2007-2009)
- NOWITECH (2009-2017)

Advanced software for offshore wind

Workflow

SIMA – Analysis of Marine operations and Floating systems ShipX – Integrated tool for ship design

Marine operations

SIMO – Simulation of marine operations

Platform loads and responses, mooring system analysis

MULDIF – Hydrodynamic analysis SIMO – Floater motion and station keeping RIFLEX – Global FEM analysis of slender structures SIMO/RIFLEX – Coupled floater and mooring analysis NIRWANA – Structural analysis of fixed platforms MIMOSA – A mooring system analysis tool WINDOPT – Optimization tool for FOWT

Power Cable

UFLEX2D – Local stress and fatigue analysis of subsea power cables
UFLEX3D – 3D stress and fatigue analysis of subsea power cables
SIMLA – Offshore power cable route optimization and installation analysis
VIVANA – Vortex induced vibrations

Vessel performance

ShipX/VERES – Sea keeping and ship performance

Vessel fleet optimization

Routing and scheduling model of maintenance operations on an offshore wind farm Vessel fleet size and mix optimization model

Advanced model testing for offshore wind

Hybrid testing (hardware-in-loop testing)

Integrated testing / verification of

SINTEF

- Control system
- Sub-structure
- Wind
- Waves
- Current
- Soil

"Excellence in the science base is not enough.

It is essential to have the capacity to translate knowledge

into new products, processes and services."

From "Life Sciences and Biotechnology. A strategy for Europe"

🕥 SINTEF

Specific projects / concept development

SPAR

- HyWind Demo
- HyWind Scottland

SEMI

- NOWITECH semi
- OO Star
- Nautilus

Mono-piles

- Borssele
- Dudgeon
- NREL 5 MW concept
 - DTU 10 MW concept

7 m O.D. 7 m O.D. 9, 11 m O.D.

NOWITECH: 40 innovations, 3 commercial spin-offs, Net present value > 5 000 MEUR*

Numerical

model

Norwegian Research Centre for Offshore Wind Technology

Technology / Quantified potential process

ew business entity

SINTEF Ocean Innovation example: - cutting edge testing capability: real-time hybrid testing

Testing offshore wind turbines is challenging due to conflicts in scaling laws:

Wind loads scales differently than wave loads

Simulated aerodynamic loads

Physical waves and current

SINTEF Ocean together with NTNU have developed a new method for testing offshore wind turbines:

Combine experiments with real time simulation

Real-Time Hybrid Model (ReaTHM[®]) testing

Advantages of ReaTHM[®] testing

- Realistic and **controlled** aerodynamic loads
 - Direct access to complete platform dynamics, power takeout, etc...
 - Facilitates calibration of hydrodynamic. models
- Possibility to test extreme conditions
 - Extreme environmental conditions
 - coherent wind gusts
 - wind shifts
 - wind-wave misalignement
- Emergency shutdown and associated transients

Further research priorities

- Support structures for larger turbines and/or deeper water
- Marine operations
- Materials

18

- Grid connection
- System integration
- Energy storage

- Asset management
- Wind farm control
- Digitalization

() SINTEF

Blue sky outlook...

- New turbine / structure concepts
- Alternative methods for installation (and decommissioning?)
- Multi-use of ocean space (access to new areas ⇒ new operational models & Logistics)
- Offshore charging from renewable energy (mobile and stationary offshore users).
- Data analytics for asset optimization (energy opt. and maintenance).

Technology for a better society